Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bisphosphonate inhibitors reveal a large elasticity of plastidic isoprenoid synthesis pathway in isoprene-emitting hybrid aspen.

Identifieur interne : 001E73 ( Main/Exploration ); précédent : 001E72; suivant : 001E74

Bisphosphonate inhibitors reveal a large elasticity of plastidic isoprenoid synthesis pathway in isoprene-emitting hybrid aspen.

Auteurs : Bahtijor Rasulov ; Eero Talts ; Astrid K Nnaste ; Ülo Niinemets [Estonie]

Source :

RBID : pubmed:25926480

Descripteurs français

English descriptors

Abstract

Recently, a feedback inhibition of the chloroplastic 1-deoxy-D-xylulose 5-phosphate (DXP)/2-C-methyl-D-erythritol 4-phosphate (MEP) pathway of isoprenoid synthesis by end products dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP) was postulated, but the extent to which DMADP and IDP can build up is not known. We used bisphosphonate inhibitors, alendronate and zoledronate, that inhibit the consumption of DMADP and IDP by prenyltransferases to gain insight into the extent of end product accumulation and possible feedback inhibition in isoprene-emitting hybrid aspen (Populus tremula × Populus tremuloides). A kinetic method based on dark release of isoprene emission at the expense of substrate pools accumulated in light was used to estimate the in vivo pool sizes of DMADP and upstream metabolites. Feeding with fosmidomycin, an inhibitor of DXP reductoisomerase, alone or in combination with bisphosphonates was used to inhibit carbon input into DXP/MEP pathway or both input and output. We observed a major increase in pathway intermediates, 3- to 4-fold, upstream of DMADP in bisphosphonate-inhibited leaves, but the DMADP pool was enhanced much less, 1.3- to 1.5-fold. In combined fosmidomycin/bisphosphonate treatment, pathway intermediates accumulated, reflecting cytosolic flux of intermediates that can be important under strong metabolic pull in physiological conditions. The data suggested that metabolites accumulated upstream of DMADP consist of phosphorylated intermediates and IDP. Slow conversion of the huge pools of intermediates to DMADP was limited by reductive energy supply. These data indicate that the DXP/MEP pathway is extremely elastic, and the presence of a significant pool of phosphorylated intermediates provides an important valve for fine tuning the pathway flux.

DOI: 10.1104/pp.15.00470
PubMed: 25926480
PubMed Central: PMC4453795


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bisphosphonate inhibitors reveal a large elasticity of plastidic isoprenoid synthesis pathway in isoprene-emitting hybrid aspen.</title>
<author>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
<affiliation>
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., A.K., Ü.N.);Institute of Technology, University of Tartu, 50411 Tartu, Estonia (B.R.); andEstonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.).</nlm:affiliation>
<wicri:noCountry code="subField">Estonia (Ü.N.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Talts, Eero" sort="Talts, Eero" uniqKey="Talts E" first="Eero" last="Talts">Eero Talts</name>
<affiliation>
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., A.K., Ü.N.);Institute of Technology, University of Tartu, 50411 Tartu, Estonia (B.R.); andEstonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.).</nlm:affiliation>
<wicri:noCountry code="subField">Estonia (Ü.N.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="K Nnaste, Astrid" sort="K Nnaste, Astrid" uniqKey="K Nnaste A" first="Astrid" last="K Nnaste">Astrid K Nnaste</name>
<affiliation>
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., A.K., Ü.N.);Institute of Technology, University of Tartu, 50411 Tartu, Estonia (B.R.); andEstonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.).</nlm:affiliation>
<wicri:noCountry code="subField">Estonia (Ü.N.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., A.K., Ü.N.);Institute of Technology, University of Tartu, 50411 Tartu, Estonia (B.R.); andEstonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.) ylo.niinemets@emu.ee.</nlm:affiliation>
<country wicri:rule="url">Estonie</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25926480</idno>
<idno type="pmid">25926480</idno>
<idno type="doi">10.1104/pp.15.00470</idno>
<idno type="pmc">PMC4453795</idno>
<idno type="wicri:Area/Main/Corpus">001D13</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001D13</idno>
<idno type="wicri:Area/Main/Curation">001D13</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001D13</idno>
<idno type="wicri:Area/Main/Exploration">001D13</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Bisphosphonate inhibitors reveal a large elasticity of plastidic isoprenoid synthesis pathway in isoprene-emitting hybrid aspen.</title>
<author>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
<affiliation>
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., A.K., Ü.N.);Institute of Technology, University of Tartu, 50411 Tartu, Estonia (B.R.); andEstonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.).</nlm:affiliation>
<wicri:noCountry code="subField">Estonia (Ü.N.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Talts, Eero" sort="Talts, Eero" uniqKey="Talts E" first="Eero" last="Talts">Eero Talts</name>
<affiliation>
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., A.K., Ü.N.);Institute of Technology, University of Tartu, 50411 Tartu, Estonia (B.R.); andEstonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.).</nlm:affiliation>
<wicri:noCountry code="subField">Estonia (Ü.N.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="K Nnaste, Astrid" sort="K Nnaste, Astrid" uniqKey="K Nnaste A" first="Astrid" last="K Nnaste">Astrid K Nnaste</name>
<affiliation>
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., A.K., Ü.N.);Institute of Technology, University of Tartu, 50411 Tartu, Estonia (B.R.); andEstonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.).</nlm:affiliation>
<wicri:noCountry code="subField">Estonia (Ü.N.).</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., A.K., Ü.N.);Institute of Technology, University of Tartu, 50411 Tartu, Estonia (B.R.); andEstonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.) ylo.niinemets@emu.ee.</nlm:affiliation>
<country wicri:rule="url">Estonie</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alendronate (pharmacology)</term>
<term>Biosynthetic Pathways (drug effects)</term>
<term>Biosynthetic Pathways (radiation effects)</term>
<term>Butadienes (MeSH)</term>
<term>Diphosphonates (pharmacology)</term>
<term>Elasticity (MeSH)</term>
<term>Fosfomycin (analogs & derivatives)</term>
<term>Fosfomycin (pharmacology)</term>
<term>Hemiterpenes (biosynthesis)</term>
<term>Hybridization, Genetic (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Light (MeSH)</term>
<term>Metabolic Flux Analysis (MeSH)</term>
<term>Pentanes (MeSH)</term>
<term>Photosynthesis (drug effects)</term>
<term>Photosynthesis (radiation effects)</term>
<term>Photosystem II Protein Complex (metabolism)</term>
<term>Plant Leaves (drug effects)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Leaves (radiation effects)</term>
<term>Plastids (drug effects)</term>
<term>Plastids (metabolism)</term>
<term>Plastids (radiation effects)</term>
<term>Populus (drug effects)</term>
<term>Populus (metabolism)</term>
<term>Populus (radiation effects)</term>
<term>Substrate Specificity (drug effects)</term>
<term>Substrate Specificity (radiation effects)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alendronate (pharmacologie)</term>
<term>Analyse des flux métaboliques (MeSH)</term>
<term>Butadiènes (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Complexe protéique du photosystème II (métabolisme)</term>
<term>Diphosphonates (pharmacologie)</term>
<term>Facteurs temps (MeSH)</term>
<term>Feuilles de plante (effets des médicaments et des substances chimiques)</term>
<term>Feuilles de plante (effets des radiations)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Fosfomycine (analogues et dérivés)</term>
<term>Fosfomycine (pharmacologie)</term>
<term>Hybridation génétique (MeSH)</term>
<term>Hémiterpènes (biosynthèse)</term>
<term>Lumière (MeSH)</term>
<term>Pentanes (MeSH)</term>
<term>Photosynthèse (effets des médicaments et des substances chimiques)</term>
<term>Photosynthèse (effets des radiations)</term>
<term>Plastes (effets des médicaments et des substances chimiques)</term>
<term>Plastes (effets des radiations)</term>
<term>Plastes (métabolisme)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (effets des radiations)</term>
<term>Populus (métabolisme)</term>
<term>Spécificité du substrat (effets des médicaments et des substances chimiques)</term>
<term>Spécificité du substrat (effets des radiations)</term>
<term>Voies de biosynthèse (effets des médicaments et des substances chimiques)</term>
<term>Voies de biosynthèse (effets des radiations)</term>
<term>Élasticité (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Fosfomycin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Hemiterpenes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Photosystem II Protein Complex</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Alendronate</term>
<term>Diphosphonates</term>
<term>Fosfomycin</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Fosfomycine</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Hémiterpènes</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Biosynthetic Pathways</term>
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Plastids</term>
<term>Populus</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Plastes</term>
<term>Populus</term>
<term>Spécificité du substrat</term>
<term>Voies de biosynthèse</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Plastes</term>
<term>Populus</term>
<term>Spécificité du substrat</term>
<term>Voies de biosynthèse</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plastids</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe protéique du photosystème II</term>
<term>Plastes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Alendronate</term>
<term>Diphosphonates</term>
<term>Fosfomycine</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Biosynthetic Pathways</term>
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Plastids</term>
<term>Populus</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Butadienes</term>
<term>Elasticity</term>
<term>Hybridization, Genetic</term>
<term>Kinetics</term>
<term>Light</term>
<term>Metabolic Flux Analysis</term>
<term>Pentanes</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse des flux métaboliques</term>
<term>Butadiènes</term>
<term>Cinétique</term>
<term>Facteurs temps</term>
<term>Hybridation génétique</term>
<term>Lumière</term>
<term>Pentanes</term>
<term>Élasticité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Recently, a feedback inhibition of the chloroplastic 1-deoxy-D-xylulose 5-phosphate (DXP)/2-C-methyl-D-erythritol 4-phosphate (MEP) pathway of isoprenoid synthesis by end products dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP) was postulated, but the extent to which DMADP and IDP can build up is not known. We used bisphosphonate inhibitors, alendronate and zoledronate, that inhibit the consumption of DMADP and IDP by prenyltransferases to gain insight into the extent of end product accumulation and possible feedback inhibition in isoprene-emitting hybrid aspen (Populus tremula × Populus tremuloides). A kinetic method based on dark release of isoprene emission at the expense of substrate pools accumulated in light was used to estimate the in vivo pool sizes of DMADP and upstream metabolites. Feeding with fosmidomycin, an inhibitor of DXP reductoisomerase, alone or in combination with bisphosphonates was used to inhibit carbon input into DXP/MEP pathway or both input and output. We observed a major increase in pathway intermediates, 3- to 4-fold, upstream of DMADP in bisphosphonate-inhibited leaves, but the DMADP pool was enhanced much less, 1.3- to 1.5-fold. In combined fosmidomycin/bisphosphonate treatment, pathway intermediates accumulated, reflecting cytosolic flux of intermediates that can be important under strong metabolic pull in physiological conditions. The data suggested that metabolites accumulated upstream of DMADP consist of phosphorylated intermediates and IDP. Slow conversion of the huge pools of intermediates to DMADP was limited by reductive energy supply. These data indicate that the DXP/MEP pathway is extremely elastic, and the presence of a significant pool of phosphorylated intermediates provides an important valve for fine tuning the pathway flux.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25926480</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>02</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>168</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Bisphosphonate inhibitors reveal a large elasticity of plastidic isoprenoid synthesis pathway in isoprene-emitting hybrid aspen.</ArticleTitle>
<Pagination>
<MedlinePgn>532-48</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.15.00470</ELocationID>
<Abstract>
<AbstractText>Recently, a feedback inhibition of the chloroplastic 1-deoxy-D-xylulose 5-phosphate (DXP)/2-C-methyl-D-erythritol 4-phosphate (MEP) pathway of isoprenoid synthesis by end products dimethylallyl diphosphate (DMADP) and isopentenyl diphosphate (IDP) was postulated, but the extent to which DMADP and IDP can build up is not known. We used bisphosphonate inhibitors, alendronate and zoledronate, that inhibit the consumption of DMADP and IDP by prenyltransferases to gain insight into the extent of end product accumulation and possible feedback inhibition in isoprene-emitting hybrid aspen (Populus tremula × Populus tremuloides). A kinetic method based on dark release of isoprene emission at the expense of substrate pools accumulated in light was used to estimate the in vivo pool sizes of DMADP and upstream metabolites. Feeding with fosmidomycin, an inhibitor of DXP reductoisomerase, alone or in combination with bisphosphonates was used to inhibit carbon input into DXP/MEP pathway or both input and output. We observed a major increase in pathway intermediates, 3- to 4-fold, upstream of DMADP in bisphosphonate-inhibited leaves, but the DMADP pool was enhanced much less, 1.3- to 1.5-fold. In combined fosmidomycin/bisphosphonate treatment, pathway intermediates accumulated, reflecting cytosolic flux of intermediates that can be important under strong metabolic pull in physiological conditions. The data suggested that metabolites accumulated upstream of DMADP consist of phosphorylated intermediates and IDP. Slow conversion of the huge pools of intermediates to DMADP was limited by reductive energy supply. These data indicate that the DXP/MEP pathway is extremely elastic, and the presence of a significant pool of phosphorylated intermediates provides an important valve for fine tuning the pathway flux.</AbstractText>
<CopyrightInformation>© 2015 American Society of Plant Biologists. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rasulov</LastName>
<ForeName>Bahtijor</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-5178-8617</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., A.K., Ü.N.);Institute of Technology, University of Tartu, 50411 Tartu, Estonia (B.R.); andEstonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Talts</LastName>
<ForeName>Eero</ForeName>
<Initials>E</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-8093-6444</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., A.K., Ü.N.);Institute of Technology, University of Tartu, 50411 Tartu, Estonia (B.R.); andEstonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kännaste</LastName>
<ForeName>Astrid</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-9753-7677</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., A.K., Ü.N.);Institute of Technology, University of Tartu, 50411 Tartu, Estonia (B.R.); andEstonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.).</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Niinemets</LastName>
<ForeName>Ülo</ForeName>
<Initials>Ü</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-3078-2192</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia (B.R., E.T., A.K., Ü.N.);Institute of Technology, University of Tartu, 50411 Tartu, Estonia (B.R.); andEstonian Academy of Sciences, 10130 Tallinn, Estonia (Ü.N.) ylo.niinemets@emu.ee.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>04</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002070">Butadienes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004164">Diphosphonates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045782">Hemiterpenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010420">Pentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045332">Photosystem II Protein Complex</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0A62964IBU</RegistryNumber>
<NameOfSubstance UI="C005059">isoprene</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2N81MY12TE</RegistryNumber>
<NameOfSubstance UI="D005578">Fosfomycin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>5829E3D9I9</RegistryNumber>
<NameOfSubstance UI="C024640">fosmidomycin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>X1J18R4W8P</RegistryNumber>
<NameOfSubstance UI="D019386">Alendronate</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019386" MajorTopicYN="N">Alendronate</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053898" MajorTopicYN="N">Biosynthetic Pathways</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002070" MajorTopicYN="N">Butadienes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004164" MajorTopicYN="N">Diphosphonates</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004548" MajorTopicYN="Y">Elasticity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005578" MajorTopicYN="N">Fosfomycin</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045782" MajorTopicYN="N">Hemiterpenes</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006824" MajorTopicYN="Y">Hybridization, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064688" MajorTopicYN="N">Metabolic Flux Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010420" MajorTopicYN="N">Pentanes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045332" MajorTopicYN="N">Photosystem II Protein Complex</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018087" MajorTopicYN="N">Plastids</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>03</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>04</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25926480</ArticleId>
<ArticleId IdType="pii">pp.15.00470</ArticleId>
<ArticleId IdType="doi">10.1104/pp.15.00470</ArticleId>
<ArticleId IdType="pmc">PMC4453795</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem Biophys Res Commun. 1999 Feb 16;255(2):491-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10049736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Sep 3;285(5433):1573-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10477522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2000 Jan 1;373(1):231-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10620343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2001 Feb;6(2):78-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11173292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Mar;13(3):535-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11251095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Feb;212(3):416-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11289606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Apr;125(4):2001-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11299379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2091-2094</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11433453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Sep;127(1):305-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11553758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2001 Sep 28;506(1):61-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11591371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1781-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 2002 May 23;45(11):2185-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12014956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 Jun;115(2):190-196</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Oct;22(14):1011-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12359528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Nov;130(3):1079-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12427975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Jan;8(1):15-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12523995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12571359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2003 Feb;62(3):389-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12620352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 18;278(29):26666-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12736259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 May 27;100(11):6866-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12748386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2003 Jul 15;415(2):146-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12831836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jan;16(1):144-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14660801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2004 Feb 1;422(1):52-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14725857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1401-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15064370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):1903-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15286296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):1967-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Mar 6;580(6):1547-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16480720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1969 Nov;44(11):1511-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16657233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1983 Dec;73(4):983-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Dec 26;45(51):15197-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17176041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2007 Jul;3(7):387-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17576426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Osteoporos Int. 2008 Jun;19(6):733-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18214569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Biomol Chem. 2008 Oct 7;6(19):3561-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19082157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Mar;149(3):1609-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19129417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Sep;151(1):448-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Mar;15(3):145-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20006534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Mar;15(3):154-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 Sep 17;402(2):363-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20624401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2010 Sep;6(9):660-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20711197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1558-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20837700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Feb;155(2):1037-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21177471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Apr;1811(4):227-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21237288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jun;156(2):816-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21502186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(5):e20419</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21637822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Feb;63(4):1637-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22371324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4058-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22392982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Jun 22;149(7):1525-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22726439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Feb;36(2):429-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22831282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2013 Apr 1;435(1):27-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23262281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Drug Des. 2013 Jun;81(6):742-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23421555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2013 Apr;67(4):1026-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23550753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jun 7;288(23):16926-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23612965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2013 Sep 15;440(2):130-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23747531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Mar;37(3):724-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24033429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 2014 Jan;67(1):77-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24169798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 May;165(1):37-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24590857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Mol Biol Plants. 2014 Apr;20(2):273-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24757332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2014;1153:161-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24777796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jun 24;111(25):E2530-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24927548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Jul 1;165(4):1488-1504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24987018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Apr;38(4):751-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25158785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 1998 Oct 2;37(18):2478-2481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29711361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1968 Feb;106(4):835-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4295337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 1997 Dec;14(6):591-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9418296</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Estonie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="K Nnaste, Astrid" sort="K Nnaste, Astrid" uniqKey="K Nnaste A" first="Astrid" last="K Nnaste">Astrid K Nnaste</name>
<name sortKey="Rasulov, Bahtijor" sort="Rasulov, Bahtijor" uniqKey="Rasulov B" first="Bahtijor" last="Rasulov">Bahtijor Rasulov</name>
<name sortKey="Talts, Eero" sort="Talts, Eero" uniqKey="Talts E" first="Eero" last="Talts">Eero Talts</name>
</noCountry>
<country name="Estonie">
<noRegion>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ülo" last="Niinemets">Ülo Niinemets</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E73 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001E73 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25926480
   |texte=   Bisphosphonate inhibitors reveal a large elasticity of plastidic isoprenoid synthesis pathway in isoprene-emitting hybrid aspen.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25926480" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020